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LETTER TO THE EDITOR 

Alternative Hamiltonian quantization 

D B Fairliet and J Nuytse 
t Depanment of Mathematical Sciences, University of Durham, Durham DHI 3LE, UK 
$ University of Mans-Hainaut, 7000 Mans. Belgium 

Received 20 May 1991 

Abstract. We take a standard Hamiltonian, quadratic in a set of creation and annihilation 
operators, and demonstrate an alternative quantization by quommutators; i.e. a set of rules 
for transposition of these operators, different from the those of the usual canonical 
commutation relations which yields a new spectrum, of a type reminiscent of logarithmic 
trajectories. 

There is considerable activity at present in the issue of the utility of quantum groups 
in physics and the question as to whether anything new may be obtained by their use 
which is more than just a reformulation of known results. From our point of view, the 
work of Curtright and Zachos [ l ] ,  in which they exhibit explicit formulas for the 
representations of q-deformed Lie algebras in terms of the undeformed ones, creates 
the suspicion that a deformed theory can always be written in terms of variables 
obeying standard canonical commutation relations, and is merely a (probably compli- 
cated) transformation of a known tractable case. This suspicion was confirmed [Z] by 
the construction of transformations which directly represent examples of deformed 
canonical commutation relations in terms of standard Fock space operators. Similar 
observations about the utility of quantum groups have been made by other workers [3]. 

On the other hand, the existence of such transformations notwithstanding, it turns 
out to be instructive to take a solvable Hamiltonian, and attempt to quantize it  using 
deformed commutators. An example of this sort in a spin-chain system has been shown 
to possess SU(2), symmetry [4]. We shall demonstrate a simple example of an 
alternative quantization of a standard quadratic Hamiltonian such that the spectrum 
is different from the one obtained by canonical quantization. Our solution is multipara- 
metric, and though set out as finite dimensional, it could easily be generalized to the 
infinite-dimensional (field theoretic) situation and prove interesting as the spectrum 
posesses quite different properties from the usual case. 

This will be achieved by using quommutators rather than the usual commutators 
or anticommutators. As is well known, the Jacobi identities which have to be satisfied 
in the usual case are replaced by the associativity requirements on the triple products 
of the operators 

( a *  b ) *  c =  a * ( b * c ) .  ( 1 )  

There exists a considerable literature on the deformation of a single harmonic oscillator 
Hamiltonian [5]. Our immediate antecedents are in the papers of Macfarlane [ 6 ]  and 
Beidenharn [7], of which 3ur results are a non-trivial generalization to any number of 
oscillators. 
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We consider a set of rules for a set of N operators a t ( j ) ,  O < j s N ,  which are 
considered as creation operators with an equal number of destruction operators a ( j )  
which annihilate the vacuum state. We also introduce a(0)  as an extra operator. The 
total set of 2 N t  1 operators a ( j ) ,  a ' ( j )  and a(0) can then be put in correspondence 
with the set x ( j )  where x's with positive j correspond to the creation operators, the 
x's with negative j to the annihilation operators, and x ( 0 )  to a(0) .  

We extend the notion of normal ordering by requiring: 
(i) that destruction operators appear on the right of creation operators; 
(ii) that a product of creation operators a ' ( j , ) a i ( j 2 ) .  . . a i ( j n ) ,  with 0 s j ; s  N,  is 

written in decreasing order of its indices; 
(iii) that a product of annihilation operators a ( j , ) a ( j J . .  . a( j . ) ,  with O < j i <  N,  

is written in increasing order of its indices. 
In terms of the x's this means that: 
(iv) in the normal products of X'S  the indices are in decreasing order. 
The rules we propose implement associativity of this product, and guarantee that 

all ways of re-ordering a given product to put it in normal form are equivalent. We 
have found a very general parametrization under the hypothesis of quommutators and 
'restricted grading' which can be summarized as follows. In particular they guarantee 
that the sum of the indices in the x's be preserved under reordering. 

a ' ( j ) a r ( k )  = r p ' ( k ) a ' ( j )  for N a k > j a l  

a ( i ) a ( k )  = c , d k ) a ( j )  for N > j >  k a  1 

a( j ) a t (  k )  = sjka'(k)a( j )  forjz  0, k > 0 and j # k 

It is obvious that, if they are non-zero, the parameters dj can be renormalized to 

Under rather general conditions the restrictions imposed by the associativity require- 
1 by rescaling of the creation and/or annihilation operators. 

ments are as follows: 

(3) 

f o r N a j > k a l  (4) 

ca0 = roo for 1 < a <  N. (5) 

1 
s. ,k =- 

1 

for 1 < j <  k s  N 
',k 

s. =- 
cjk 

,k 

In order to write the remaining restrictions let us also define the quantities mix by 

Then m,, is forced to depend only on its first index 

m. = A .  for 1 s j < k < N. I k  J (7) 
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This equation defines A, for j up to N - 1. It is then convenient to introduce fNN as 
A N .  The parameters are then given by 

The parameters r;, and ckj, defined for k > j > 0 may be regarded as the superdiagonal 
and the subdiagonal entries in the same N x N matrix. There are ( N - l ) ( N - 2 ) / 2  
relations between them which prescribe through (7) all ckj in terms of ';* and of the 
N - 1 free parameters A. for 1 S a S N - 1 .  

Let us finally note that if the adjoint operators are defined in the usual way in the 
usual Fock space, the parameters are restricted to satisfy 

e, = r;. (9) 

This in turn implies that the A's are real positive and that the modulus of r5 depends 
on its first index only. 

Now consider the Hamiltonian (quadratic up  to the last term): 
N 

;=I 
H = 1 hja'( j )a( j )+hoa(0)2+h.~a(0) .  

We then solve the problem of obtaining a secular equation of the following form for 
an operator X being a linear combination of the a's and at's: 

( 1 1 )  

This equation is a quommutator generalization of the usual commutation relations 
between the Hamiltonian and the creation and annihilation operators. The algebra 
itself is an extension of that proposed by Vokos, Zumino, Wess and Schirrmacher 
[S-101 in their development of a differential calculus on quantum planes. 

After some algebra one obtains the following results for the allowed Hamiltonian, 

HX - AXH = pX. 

where the product hoh, has to vanish 

hoh, = 0. 

When h, = 0 the extra restrictions on the parameters are 

roj = A, for N 3 j >  1 

while when h,  = O  the restrictions are 

ro, 2 = A, for N a j a l .  ( 1 5 )  

The solutions X'of (11) are the x ( j )  and their corresponding eigenvalues are 

x ( j )  = a%) A = A, p = A l - l  

x(0) = a(0 )  A = A o = l  p = o  
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For a multiparticle state 

with the usual quantization scheme, the spectrum of the Hamiltonian (12) is simply 

E =  nj(Aj-l). (18) 

In the case when the quantization is done with the associative rules of our quommu- 
tators, we obtain 

E =n  A?- 1 (19) 

N 

, = I  

j 

instead. 
The spectrum we have obtained (19) is reminiscent of what has once been called 

logarithmic trajectories [11;13] and may well be the natural way to implement these 
type of trajectories in a quantum field theory. There may also he an application to the 
theory of squeezed states in quantum optics; the single oscillator deformation has 
already appeared in this context [14]. 

Needless to say, this approach poses many difficult problems. We here cite a few. 
( 1 )  We have tried to extend this to an infinite qualgebra of the Virasoro type, as 

the Hamiltonian (12) is a natural candidate for Lo in the infinite limit, but the obvious 
generalization to L, fails. 

(2) It would be interesting to  try to obtain a Lagrangian approach to this theory, 
and to construct a quantum mechanics evolving in time 

(3) Lorentz invariance should be introduced in some way. Does a(0 )  play a special 
role in this respect? 

(4) What happens in the presence of interactions? What further restrictions are 
necessary so that the creation and annihilation operators can be regarded as Fourier 
coefficients in the expansion of a field, and how does one develop a perturbation 
theory? Should the Hamiltonian be modified? There is the tantalizing prospect that in 
the particular case when the interactions are of exponential type, so that the theory is 

without resort to a perturbative procedure. 
an ae,fine, or confom,a: To& theory, a quaiiiizaiion eixisis foi the theory 2s a who:e, 

( 5 )  Operator representations of the algebra can probably be constructed. 
We hope to come back later to some of these problems. 
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